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NOMENCLATURE

A

aw

Bq
C

C1

cp
eel

Ce2

c.
Cl

c2

D

dl

d2
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l

M

Mr
m

n

Pk
Prt

q

qw

qtv / 7"w "

sound speed based on the wall temperature

heat transfer parameter

wall-law parameter

sublayer parameter

specific heat
turbulence model constant for e
turbulence model constant for e

turbulence model constant

turbulence model constant

turbulence model constant

(A 2 + R) 1/2

constant defined in equation (18)

constant defined in equation (19)

constant defined in equation (20)

turbulence kinetic energy

index defined in equation (11)
free-stream Mach number

UTl a,o
index defined in equation (11)

index defined in equation (11)
production of kinetic energy
turbulence Prandtl number

heat flux

heat flux at the wall

R

Reo

T

U

Y

y+
E

#t
vt

vw

P
pw

ak

o'_

a¢
T

TW

¢
oJ

2cpTw / Prt
Reynolds number based on the momentum

thickness

temperature
temperature at the wall

velocity

transformed velocity

Uc/Ur, dimensionless transformed velocity

frictional velocity
shear stress

vertical distance from the wall

Ury/vw, dimensionless normal coordinate

turbulence energy dissipation
Van Karman constant

Van Karman constant for temperature

turbulence viscosity

kinematic turbulence viscosity
kinematic turbulence viscosity at the wall

density

density at the wall
turbulence Prandtl number for k

turbulence Prandtl number for e

turbulence Prandtl number for ¢

k/e, turbulence time scale
wall shear stress

generalized turbulence length-scale variable
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SUMMARY

A critical assessment is made of the closure co-

efficients used for turbulence length scale in existing

models of the transport equation, with reference to the

extension of these models to compressible flow. It

is shown that to satisfy the compressible "law of the
wall," the model coefficients must actually be func-

tions of density gradients. The magnitude of the errors

that result from neglecting this dependence on den-

sity varies with the variable used to specify the length

scale. Among the models investigated, the k-w model

yields the best performance, although it is not com-
pletely free from errors associated with density terms.

Models designed to reduce the density-gradient effect

to an insignificant level are proposed.

INTRODUC_ON

Calculations of high-Mach-number turbulent flows

have become a major challenge in computational fluid
dynamics in recent years. Traditionally, models devel-

oped for incompressible flows have been extended to

compressible flows with little or no modification when

mass-weighted dependent variables are used. Our in-

vestigation centers on the "dissipation-transport" equa-

tion and its role in predicting the compressible law

of the wall. This equation, or some other equation
implying a length scale for the turbulence, is used in

"two-equation" eddy-viscosity transport models and in

full Reynolds-stress transport models.

The Van Driest compressible law of the wall is
derived from inner-layer similarity arguments that lead

to the "mixing-length" formulas for velocity and tem-

perature (Bradshaw, 1977).

OU/Oy = ('rw/p)l/2/_y (1)

aT/au = -q/[pCp(Vw/p)l/2t_Ty] (2)

Assuming r = Vw, integration of (1) and (2)
yields the temperature and velocity profiles

T = C1Tw - PrtUqw/(Cp'rw) - PrtU2/(2Cp) (3)

U+ = Uc/Ur = lln y+ + C (4)

where Prt is the turbulent Prandtl number and is equal

to _/t¢ T. The coefficient C1 is necessary here because,

strictly, equations (1) and (2) do not apply in the vis-
cous sublayer region. The quantities Ur and y+ are

defined with respect to the physical properties at the
wall as

and

Ur ---(7w/pw)1/2 (5)

y+ = yUT/vw (6)

The coefficients C l and C are assumed to have

the following forms, recommended from a data fit by

Bradshaw (1977).

C1 = 1 C = 5.2 + 95M 2 + 30.7Bq + 226B 2 (7)

where Mr = Ur/aw and Bq = qw/(pwcpUrTw).
The Van Driest transformed velocity, Uc, is defined by

Uc = foU(p-_)l/2dU (8)

Substituting P/Pw = Tw/T and equations (3) and

(7) into equation (8) yields

A+U
Uc = Rl/2[sin-l(_) - sin-l(A)] (9)

where R = 2cpTw/Prt, A = qw/rw and D =

(A 2 + R)I/2.

It should be noted that the Van Driest compress-
ible law of the wall has been shown to accurately repre-

sent experimental boundary-layer velocity profiles cov-
ering a wide range of Mach numbers and Reynolds

numbers (Fernhoh and Finley, 1980).

Figure 1 shows computed velocity profiles at

Re 0 = 10, 000, transformed using equation (9). The

computations were obtained from the Navier-Stokes
calculations of a Mach 5 flow over an insulated flat

plate. Two versions of low-Reynolds-number k - e
models were used: Chien (1982) and Launder and

Sharma (1974). Also shown is a line representing the

compressible law of the wall (eq. (4)), for n = 0.41.

It can be seen that the calculated velocity profiles ex-

hibit a steeper gradient than the expected value of 1/n.

This behavior was also observed in a Reynolds-stress-

model calculation based on a low-Reynolds-number



versionof the Launder-Reece-RodimodelCLaunder

et al., 1975; Launder and Shima, I989). To eliminate

the uncertainties associated with the low-Reynolds-

number parts of the models, further calculations were

performed that were based on the standard high,

Reynolds-number version of the k - e model coupled

with compresslble-wall-functlon treatments (Viegas and
Rubesin, 1985; Huang, 1990). i Figure 2 shows that at

M = 0.1, the predicted profile follows the Coles law of
the wall, but at M = 5, the calculation displays an ear-

lier Hse of the profile in the log-law region. 2 It should

be noted that the displacement of the profiles between
the two caIculations is the result of differences in the

treatment of the viscous wall region and is not relevant

to the present discussion. The excessive slope of the

velocity profile has also been observed by other inves-

tigators, both with the k- ¢ model (Aupoix, 1990) and
with a Reynolds-stress model (Viegas, J. R., private

communication).
The above results clearly indicate that standard

turbuIence models do not accurately predict boundary

layers at high Mach numbers, and since the defect oc-
curs with both the k-e and the Reynolds-stress models

it appears that the trouble lies in the e-equation.
This project is supported by NASA grant

NCC 2-610-SI. We are grateful to Mr. J. G.

Marvin and Dr. J. Shang (Wright R & D Center) for

their encouragement, to Dr. J. R. Viegas and Mr. M. W.
Rubesin for their review of the current manttseript, and

to Mr. M. W. Rubesin for his suggestion of the form

of ¢ in equation (I1).

ASSESSMENT OF CLOSURE
COEFFICIENTS

In this section, attention is focused on the inner

layer of a constant-pressure boundary layer, where con-

vective transport is negligible and the eddy-viscosity
hypothesis is formally applied. The velocity profile is

governed by

o ou
_yy (pt-b-ffy) --0 (10)

IThe model coefficients are c_ m 0.09, c,_l = 1.44, c_z =

1.92, o',_ = 1 and a_ = 1.17. The value ofo-, is altered from 1.3

to 1.17 to give a better fit to the incompressible law of the wall.

2Experimental evidence has suggested that the correction func-
tion for the wake region is nearly the same function of the empir-

ically chosen Reynolds number as at low speeds.

where #t is the turbulent viscosity and, for a k - e
two-equation model, is defined as 9t = e_pk2/e. The

constant c_, is fixed at 0.0q to satisfy -_"_/k = 0.3 in
local equil_rium.

To discuss the problem in a general manner, a new

variable, ¢, is defined in relation to the dissipation of

the turbulence energy, e.

4) = pnkmel (I1)

Equation (11) allows the construction of a variety of

length-scale equations by the proper choice of n, m,
and I.

In the standard format of a high-Reynolds-number

two-equation model, the transport equations for k and

_, respectively, can be written as

0 (#t Ok_
= pPk-

O__(pt Od_) = clppk¢ _ C2t_ _

and

(12)

(13)

where o'k and a¢, are turbulent Prandtl numbers for k
and ¢, respectively. Pk is the generation term

• /OU_2
Pk = -rgi_ 7 = vt(-_y ] (14)

where -fie = r/p = rw/p.

In equation (13), Cl and c2 are dimensionless co-

efficients and are related to the corresponding coeffi-

cients of the original e-equation, Col and c_2, according
to

cl = lc, t + m (15)

c2 =/cE2 + m (16)

In the standard k - e model, c_2 = 1.92; in the newer

two-equation models, such as the k - o., and k - r

models, c_2 is adjusted to 1.8 in order to provide a

better fit of the decay law of homogeneous isotropic
turbulence. A constant value of c_l is generally chosen

by computer optimization.
To ensure that the plot of U+ against In y+ has

a slope of 1/_ in the logarithmic region, a unique re-
lation must exist between _; and the other coefficients.

The derivation of this relation is similar to that for the

incompressible case, but with the following density ef-
fects taken into account. First, in this region the usual



incompressible assumption of Ok/Oy = 0 is replaced

by Opk/Oy = O, because -_--_/k = constant and r = "rw
= -pu---_. Second, the dissipation relation r = U3/gy is

replaced by e = (Tw/p)3/E/tcy, because the assump-

tion in this region is that e = Pk = -W_(OU/Oy).

Finally, the density can no longer be factored out of the
diffusion terms: O/Oy(lzt...) # (l/p)O/Oy(vt...).

By substituting these assumptions into equation (13)

and performing some mathematical manipulations, one
can obtain

" 1/2

(c2- Cl)

1 [ yOp ._ y202p .J tYOPx2]= 1 + -_ dlp-_y + u27_y 2 + u3t;_y ] ] (17)

where

dl=n-m-21+312+2ml-2nl+cl_k _ (18)

3 0",4

d2 = n - m - _l + ct __ (19)

d3 = (n-m-31)(n-m-3l-
1 3 o'¢

2 2)- 2ct_kk (20/L

It can be seen that in order to extend the models for in-

compressible flows to compressible flows without hav-

ing to adjust the closure coefficients, the second term
on the right-hand side of equation (171 must be neg-

ligible compared to unity. This can be accomplished

either with small values of dl, d2, and d3 or with small

density-gradient terms, (y/p)Op/Oy, - (y2 /p)O2p/Oy2,
and (y2 /p21 (Op/Oy)2.

Table 1 lists the coefficients d 1 to d3 for differ-

ent turbulence models. The magnitude of the density-

gradient terms associated with d I to d 3 can be obtained

by assuming that equations (3) and (4) are valid in the

range y + = 30 to 1000 at the Reynolds number of

Table 1. Coefficients associated with density-gradient
terms

Model n m 1 dl/12 d2/l 2 d3/l 2
k - e 0 0 1 2.68 0.18 0.48

k -- w 2 0 --2 2 0.63 -0.13 0.19

k-w 0 -1 1 0.56 0.06 -0.33
a

k- r 0 1 -1 2.47 0.97 0.70

'_The r-equation (r = k/e) (Speziale et al., 1990) written in the

form of equation (13) will lead to try. = -1.44.

the calculation in figure 1. The density-gradient terms

are shown in figure 3 for M = 5 and an insulated

wall. It can be seen clearly that the density effects at

the Reynolds number of the computation are not neg-

ligible and have to be taken into account in order to

correctly predict the law-of-the-wall behavior.
Equations (3), (10), (12), and (13) have been solved

between y+ _ 50 and y+ _ 1000 for a Mach 5 flow
over an insulated wall. The temperature profile is given

by equation (3), with the free-stream temperature given
at 15°C. The velocities at two boundaries are given,
one fixed at the free-stream condition and the other cal-

culated from the law of the wall (eq. (4)). The bound-

ary conditions for k and ¢ are estimated from k =

(rw/p)/c 1/2 and ¢ = (pn-3l/2-rn'r31/2+m/cr_/2)/

(,¢u)l.
Figure 4 shows the calculated density-gradient

terms obtained using the k - • model. These results

should be compared with those of figure 3, in which

the profiles were obtained under the assumption that the

compressible law of the wall has been satisfied. The
square root of the right-hand side of equation (17) can

be viewed as the ratio of the theoretical t¢ (= 0.41)

to the calculated _¢. This ratio is shown in figure 5.

The value can be as high as 1.6 in the k - e model; in

contrast, the k - w (¢,.,= 6/k) model of Wilcox (1988;

also Wilcox and Traci, 1976; and Wilcox, D. C., pri-

vate communication) displays only a mild increase of

1/_¢. This is because the coefficients dl to d3 associ-

ated with density-gradient terms are all relatively small
in the k - w model, as shown in table 1. Figures 6(a)

and 6(b) show the calculated velocity profiles for the
k - • and k - o., models, respectively. These profiles

agree with the behavior of a shown in figure 5.

POSSIBLE REMEDIES

One obvious way to predict the correct Van Driest

law-of-the-wall profile is to incorporate the density-
gradient terms directly into the coefficient C1.3 This

is done by an iterative procedure and has been found

to return the k - • model to the expected law-of-the-

wall profile. As shown in figure 7, the value of c1

required in the e-equation drops to 50% of its original
value at y+ = 1000. This is too drastic a change to

be acceptable.

31t appears that c_ is a better candidate to adjust than a,_ because

equation (17) is derived under the assumption that tr, is a constant.



Another feasible remedy is to find a new model

that will make d 1, d2, and d3 all zero. Unfortunately,

substituting equation (15) into equations (18) through

(20) gives the solution n = m = I = 0. Since this is
not a meaningful solution, it seems best to choose a

model that will allow two leading coefficients to equal

zero, such as dl and d 2 = 0. Assuming n = 0and

m = -1, the solution l = 5/6 and cl(a¢/ak) = 0.25

makes both d 1 and d2 equal to zero. On the other hand,

if one assumes n = 0 and m = -l, the requirement for

d 1 and d 2 to equal zero will lead to a k - v _ model.

These models give rise to an additional constraint on

the relation between a k and a4, because Cl (acb/ak) is a
known value obtainable from the solution satisfying d l

and d 2 equal to zero. Calculations have demonstrated
that these models do indeed reduce the density effects

to insignificant levels: 0.43% and 0.15% for k - v,_

and k - c5/6/k models, respectively, at y+ = 1000.

CONCLUSIONS

The present study has shown that the extension of

incompressible turbulence models to compressible flow

requires density corrections to the closure coefficients

in order to satisfy the law of the wall (logarithmic law
in Van Driest transformed coordinates). Equation (17)

provides a way to estimate the error in boundary layer
calculations. The k - w model appears to be more at-

tractive than the k-e model at high Mach numbers, be-

cause the coefficients of the unwanted density-gradient
terms are smaller. A length-scale transport equation

can be devised to minimize the density effects and has

proved successful, at least in boundary-layer flow. Fur-

ther investigation of the proposed models in other flows

is under way.
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